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INTRODUCTION

In a previous series of papers [1-5], matrix methods for linear
dynamic analyses of lattice structures are developed. A lattice structure,
in this context, is defined to be an idealized network of one-dimensional
members which are connected by joints. In this paper, transfer matrices
and joint coupling matrices are used to compute the natural freguencies of
vibration of a five-bay planar lattice structure. The method of analysis
is applicable to general two and three-dimensional lattices. The necessary
numerical computations may be performed easily using a personal computer.
Numerical results for the first twenty-five nonzero natural frequencies of
the five-bay lattice structure are given for the case when the members of
the lattice are modeled as Bernoulli-Euler beams, and for the case when
the lattice members are modeled as Timoshenko beams. The results obtained
here are compared with the results of a previous analysis [6] using a
finite element method and an experimental modal analysis. A short dis-

cussion of the results and of some potential applications of the type of

analysis presented here is given.
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ANALYSIS

Lattice Structure and Model

The lattice structure considered here is shown in Fig. 1. The lattice
is machined from a single piece of aluminum, and contains no welds or
fasteners.

The model used here to analyze the lattice structure of Fig. 1 is
shown in Fig. 2. The structure is modeled as an idealized lattice of one-
dimensional members which are connected by joints. It is assumed that the
members and joints can move only in the plane of the structure, and that
all motions are small.

The joints of the lattice model are labeled 1 through 12 as shown in
Fig. 2. It is assumed that each joint is rigid, and that each connection
between a joint and a beam is rigid. It is also assumed that each joint
is massless and has no spatial extent. The assumptions that the joints are
massless and have no spatial extent are made only for convenience; some
comments about the analysis of joints with mass and/or spatial extent are
given below.

It is assumed that all members of the lattice model of Fig. 2 are
identical, and that each member can extend (and contract) axially and bend
flexurally. It is also assumed that the axial and flexural motions are
uncoupled. Two different member models are used. 1In the first model,
hereafter called the Bernoulli-Euler beam model, the lattice members are
modeled as classical longitudinal rods for axial motions and as Bernoulli-
Euler beams for flexural motions. In the second model, hereafter called
the Timoshenko beam model, the lattice members are modeled as classical

longitudinal rods for axial motions and as Timoshenko beams for flexural
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» motions. In both models, the stace vector at any point x of a lattice ete
r
member is of the form | "
"
dﬂ
u(x,t) :ﬁ&
1y
v(x,t) i
(1)
b
P(x,t) ~
z(x,t) = (1) Ry
M(x, t) L.eg
V(x,t) P3¢
Q {
F(x,t)
4
.Q
where u(x,t) is the longitudinal displacement of the member, v(x,t) is the -
Y
transverse displacement of the member, Y(x,t) is the rotation of the member, o'
o
M(x,t) is the bending moment in the member, V(x,t) is the shear force in |‘
ol
the member, F(x,t) is the axial force in the member, x is a spatial coordi- ﬁ‘
Y
‘h "
nate which extends along the length of the member and t is time. The com- R
ponents of the state vector and the sign convention adopted here for the g‘
components of the state vector are shown in Fig. 3. Local coordinate ~
e
directions Xy (1 =1,2, ..., 16) are assigned to the lattice members as ﬁ:‘
N
shown in Fig. 2. e
K5
i
o
Joint Coupling Matrix Relationships o
_ _ P,
The Fourier transforms 2z, and z, of the state vectors z. and z_, shown *:~
=1 =2 =1 =2 a1
in Fig. 2 are related by an equation of the form {3] <
_
2 =
Bl(w) =0 (2) ff
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coupling matrix relationship for joint 1.
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» where‘gl(w) is the joint coupling matrix of joint 1. Eqn. (2) is the joint

Joint coupling matrix relation-

ships for joints 2 through 12 can be written in a similar manner as

(3)

(4)

(5)

(6)

(7)
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By, W) 0 (13) S
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232 X
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X]
L The locations of the state vectors 2z (i =1,2, ..., 32) are shown in e
4
Fig. 2. The joint coupling matrices Ei (i = 1,2, ..., 12) may be derived f-
4
from the general formulas given in [3], or directly from first principles, ;:':
1Y
L as is done in Appendix A. The joint coupling matrices are written as a
4
function of radian frequency w because the elements of the joint coupling ::
.
matrices depend, in general, on frequency. (Note, however, that for the :
.
r rigid, massless joints considered here, the elements of the joint coupling L
Py
matrices derived in Appendix A are independent of frequency.) The deriva- _’
l{‘
tions of the joint coupling matrices in Appendix A are based on the assump- :_".':
..
tion that each joint is completely unconstrained. Joint coupling matrices v
e
o
_1_3_1, 22, Ell and §12 are 6 x 12 matrices, and joint coupling matrices §3 :*:
through _§10 are 9 x 18matrices. The right hand side of each of eqns. (2) ’ '}
P
through (13) is zero because it is assumed that there are no external forces L
L
or moments applied to the joints. '
N
Eqns. (2) through (13) can be combined into a single equation of the ;-.
s
form
_?{;(w)zc =0 (14) .A
where EG is a global joint coupling matrix given by ' :
2
3
5
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B, 0 - + - 0
o B, :
B.(w) =| , . . (15)
. . 9_
0 . . . 0 B
L = 712 |

and Zé is a global state vector given by

= . (16)

ko

232

The global joint coupling matrix §C(w) is a 96 x 192 matrix, and the global
state vector Zé is a 192 x 1 matrix. Eqn. (16) contains all the information
about the dynamics of the joints in the lattice model of Fig. 2 and all the
connectivity information (that is, information about which members are

connected to which joints), but contains no information about the dynamics

of the members of the lattice.

Transfer Matrix Relationships

The Fourier transforms 23 and 21 of the state vectors 53 and 51 in

Fig. 2 are related by an equation of the form

-9 -
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z, = z 17
z3 = Tz, (17) _'
~
where T(w) is the 6 x 6 transfer matrix of the member connecting joints 1 5
'.‘
® and 2. Egqn. (17) is the transfer matrix relationship for the member con- Y
necting joints 1 and 2. The transfer matrix for the Bernoulli-Euler beam
model and the transfer matrix for the Timoshenko beam model are given in j'
o
® Appendix B, The transfer matrix is written as a function of radian 3
frequency w because the elements of T depend, in general, on frequency. :
Transfer matrix relationships for each of the remaining members in the N
b
° lattice model of Fig. 2 can be written as ;',
zg = Tz, (18) :
. -
zg = I(wz, (19) 2
F
»
—_ —_ »
zg = T(wz, (20) "




[
.,

| £ 254 = T(Wz;g (27)
2y7 = Iz, (28)

- M _ _
Zge = TlWizyg (29)
_ 2y9 = Tlwizy, (30)
23, = Tlw)zyg (31)
' v :2_:-31 = E(N)Ew (32)

The transfer matrices in eqns. (17) through (32) are identical because the
RN members in Fig. 2 are identical, and because of the choice of the local
coordinate directions. (As discussed in [1], reversing the sense of the

local coordinate direction changes the transfer matrix.)

o Eqns. (17) through (30) can be combined into a single equation of the
form
. EG = IG(M)ZG/Z (33)

where the global state vector Zb is given by eqn. (16), IG(w) is a 92 x 196

AR global transfer matrix given by
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@ and ZC/Z is a 96 row vector given by

L2 A

PR

XN

WX EARAR

(35)

"’_l 3 4 rg‘l\' (S SLARY -""5:"

RN
« "
b

g

WADCRPACRA,”

3

The matrix I in eqn. (34) is the 6 x 6 identity matrix. The vector Z

Yy %

G/2

[y
.
4

contains half the state vectors in ZG Eqn. (35) contains all the

information about the dynamics of the members in the lattice model of

Fig. 2, but contains no information about the joint dynamics and no

}s"ﬁ"ﬁ- 1‘.- 4

connectivity information.
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® Determination of Natural Frequencies
Substitution of eqn. (33) into eqn. (14) gives
® B IWZ,, = 0 (36) 3
where the product 13_G(w)'_1‘{;(w) is a 96 x 96 matrix. For each value of w,
° eqn. (36) is a system of homogeneous linear equations for the components X
of the state vector ZG/Z' The values of w for which a nontrivial solution ;
- . . .
for ZG/Z may exist must satisfy the equation .
ld
~
. -
det(gc(w)zc(w)) =0 (37)
o The values of w which satisfy eqn. (37) are the natural frequencies of the
lattice model of Fig. 2.
Because the global transfer matrix IG contains trigonometric and ;
® hyperbolic functions of w, eqn. (37) is a nonlinear transcendental equation i
in w. Since the members of the lattice model of Fig. 2 are modeled as con- 3
)
tinuous beams, there is an infinite number of values of w which satisfy ]
[
’
® eqn. (37). T
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> NUMERICAL RESULTS .-

‘ Method of Computation W
AR

In order to solve eqn. (37) for w, the determinant of _Bc(u»)IC(*‘) can b

be plotted numerically as a function of w, and the values of w for which 3

the determinant equals zero can be determined graphically. Alternatively, -

a root-finding algorithm such as the bisection method or the secant method jij:.

b {7] can be used. -
Both the graphical method and the root-finding algorithms require a 7z

numerical evaluation of det:(_B_G(w)_T_G(w)). Since most of the elements of :":

‘4

A . . A

b §G(w) and Tc(w) are zero, it is very inefficient to encode EC(w) and Tc(u) -
into a computer program directly from eqns. (15) and (34). The matrices &

) _ 4

_l}c(w) and _’1_"G(w) are simple enough that the product gc(w)_’gc(w) may be com -

L puted in 6 x 6 block form by hand. The result of such a hand computation -‘
] I3 \ - \‘

shows that EG(w)IG(w) is a banded matrix. Thus the determinant of gc(u)lc(m) =

may be computed efficiently by using a computer algorithm specifically :::-’

~

o designed for banded matrices. .C.'_

The PASCAL language computer program used here to evaluate ;
det(gc(w)TG(w)) as a function of w is listed in Appendix C. The heart of :'_:

* the program is the procedure bandet, which is based on a Gaussian elimination f

algorithm designed to solve a system of linear equations with a banded s
coefficient matrix. A discussion of this Gaussian elimination algorithm is :':.

P given in [8]. Only the portions of the bandet procedure given in [8] which

are necessary to evaluate the determinant of the banded matrix are used here. N
Numerical results for the first twenty-five nonzero natural frequencies :‘..-

~

of the lattice model for the case when the lattice members are modeled as ~

r Bernoulli-Euler beams and for the case when the lattice members are modeled T
\"_
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»
o as Timoshenko beams are given in Table 1. The results in Table 1 are Y
obtained by first plotting det(gc(w)zc(w)) as a function of w in steps of o
10 rad/sec to evaluate the approximate location of the zero crossings, and ':‘.
then evaluating det(B_ (w)T.(w)) as a function of w in steps of 1 rad/sec in :
® = =6
the neighborhood of a zero crossing. The value of the natural frequency is N
then taken as the average of the two values between which det(gc(w)zc(w)) i
° changes sign. The material and geometric properties of the lattice members ;
which are used in the computations are given in Appendix B. A typical plot .
of det(g{;(w)_TC(w)) as a function of w is shown in Fig. 4. The square data x
° points represent the values of det(_l}c(w)zc(w)) which were actually computed, ::.
and the curve is a smooth (second order polynomial) fit to the data points. '-‘
An interesting section of the function det(BG(w)'_I‘C(w)) is shown in .
® Fig. 5. It appears from Fig. 5 that det(gc(w)_’l_‘c(w)) takes the value zero ::‘
somewhere near w = 3250 rad/sec. The very small slope near w = 3250 rad/sec z
suggests that the zero near w = 3250 rad/sec may be a multiple zero. (A 2
° multiple zero of multiplicity k is a value of w for which det(%(w)lc(w)) =0
and the first k-1 derivatives of det(gc(w)zc(w)) with respect to w are also
equal to zero.) However, an evaluation of det(gc(w)zc(w)) near w = 3250 -::'
° rad/sec with a smaller step size for w (see Fig. 6) shows that there are in -'
fact five distinct zero crossings between w = 3242 rad/sec and w = 3260 "
rad/sec. (Note that the vertical scale of Fig. 6 is much different from k
. the vertical scale of Fig. 5.) t
The natural frequencies computed with the Bernoulli-Euler beam lattice :‘.
model are plotted as a function of flexible mode number in Fig. 7. Fig. 7 ,
° also shows the natural frequencies obtained in a previous analysis [6] using '
a finite element method and an experimental modal analysis. It is seen \
<
- 16 - ®




b that excellent agreement is obtained between the natural frequencies com-

puted here and those given in [6]. The maximum difference between the

IINGE

results obtained here and those given in [6] is six percent.
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DISCUSSION

The number of natural frequencies in Table 1 was chosen arbitrarily.
The method presented here can be used to compute as many natural frequencies
as desired. For large w, the value of det(gc(w)zc(w)) may be larger than
the largest number which a particular computer can store, but this problem
may be overcome by introducing scale factors into the calculation of the
determinant [8]. As shown by the discussion concerning Figs. 5 and 6, some
care is required in finding the natural frequencies, since they may be very
closely spaced in some frequency ranges.

The results in Table 1 show that rotary inertia and shear deformation
of the lattice members, which the Timoshenko beam model includes and which
the Bernoulli-Euler beam model does not, have very little effect on the
natural frequencies of the lattice model for the frequency range considered
here. Note, however, that the natural frequencies predicted by the Timo-
shenko beam model are less than or equal to the frequencies predicted by
the Bernoulli-Euler beam model, and that the difference between the two
models increases with increasing frequency. It can be shown analytically

that for a single beam which is simply supported at each end, the effect

of rotary inertia and shear deformation is to decrease the natural frequencies

of flexural vibration, and that the effect increases with increasing
frequency [9].

The joint models adopted here are perhaps the simplest possible. How-
ever, the excellent agreement between the results computed here and the
results of the experimental analysis in [6] shows that the simple joint
models are certainly useful in the frequency range considered here. Also,

more complicated joint models may be included in the present analysis with
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Q

only minor difficulties; all that is needed is a joint coupling matrix for
each joint. Joint coupling matrices for two and three-dimensional rigic

joints with arbitrary mass and arbitrary spatial dimensions are derived in

[3].
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CONCLUSIONS AND RECOMMENDATIONS 3

The type of analysis presented here may be applied to any system which
may be modeled as a connected network of one-dimensional members. (Note,

for example, that this kind of analysis is not restricted to structural or

mechanical systems, and is related to techniques used in the analvsis of N
“

electrical and microwave networks [10].) The necessary numerical computa- ;
tions are straightforward, and are easilv performed with a personal computer. N
As discussed above, the effect of various member models and joint models :

on the natural frequencies of the lattice may be determined by simply t
altering the appropriate transfer matrices and joint coupling matrices. f:
Also, and perhaps more importantly, the effects of changes in the structure ?;
of the lattice may be considered using the techniques presented here. E
Changes in structure may be due, for example, to disconnected joints or >
damaged members. Thus the techniques discussed here may be used to begin i:
to study the following nondestructive evaluation question: given a mea- Eﬁ
surement of, say, certain natural frequencies of a lattice structure, what "
is it possible to conclude about the structural integrity of the lattice? z
This nondestructive evaluation question may also be expressed in the wider :S
context of the system identification problem, in which the properties of -

an unknown system are deduced from certain measurements of the svstem,
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b TABLE 1 First twenty-five nonzero natural frequencies of lattice model. o
2
Flexible v
Mode Bernoulli-Euler Beams Timoshenko Beams $
+ Number (rad/sec) (rad/sec) ::‘
1 308.5 308.5 2
2 433.5 433.5 >
3 606.5 605.5 5_
4 726.5 725.5 :
5 932.5 931.5 2
6 1438.5 1437.5 .
7 1535.5 1534.5 E
8 1766.5 1764.5 ‘
9 2071.5 2067.5 N
10 2115.5 2111.5 :
11 2307.5 2303.5 2
12 2479.5 2474.5 P
13 2887.5 2881.5
14 2979.5 2973.5 ;
15 3242.5 3232.5 P
16 3249.5 3238.5 | q
17 3254.5 3243.5 | v
18 3257.5 3246.5 1
19 3258.5 3248.5 ‘ R
! 20 3552.5 3544.5 | h
bo21 4120.5 4108.5 | 2
{ 2 5923.5 5903.5 :
|23 f 6094. 5 | 6072.5 ’ i
Sy 6704.5 ! 6675.5 | 'y
: 25 | 6894.5 L 6861.5 B
1:'
W
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!
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DIMENSIONS 1N (O:10in) (0:375in)
CENTIMETERS
NOT TO SCALE
Fig. 1 Five-bav lattice structure.
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Fig. 3

Lattice member, showing components of state vectors
and sign convention.
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® APPENDIX A: DERIVATION OF JOINT COUPLING MATRICES N
In this appendix, the joint coupling matrices for the lattice model :‘

of Fig. Al are derived. The joints of the lattice model are labeled 1 "

°® through 12 as shown in Fig. Al. It is assumed that all joints and members !
can move only in the plane of the lattice, and that all motions are small. -:

It is also assumed that each joint is rigid, massless, and has no spatial :ﬁ

°® extent, and that each connection between a member and a joint is rigid. o
The state vector at any point x of any member of the lattice model of R

Fig. Al is assumed to be of the form ::

:-

L u(x,t) :
v(x,t) :

v(x,t) p

_Z_(X’t) = M(x,t) (A1) -

. Vix,t) -
F(x,t) y

where u(x,t) is the longitudinal displacement of the member, v(x,t) is the .

transverse displacement of the member, Y(x,t) is the rotation of the member,

M(x,t) is the bending moment in the member, V(x,t) is the shear force in \.
‘ the member, F(x,t) is the axial force in the member, x is a spatial coor- ‘E
® dinate which extends along the length of the member and t is time. The N
v
components of the state vector and the sign convention adopted here for E
the components of the state vector are shown in Fig. A2Z. Local coordinate ::'

v

directions Xg (i =1,2, ..., 16) are assigned to the lattice members as

shown in Fig. Al. Throughout this appendix, an overbar will denote a

O AR

Fourier transform.
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Joint 1
L
3 The components of the state vectors 51 and 52 and a free-body diagram ¢
»
of joint 1 are shown in Fig. A3. The equilibrium equations for joint 1 =)
-
o,
are "P
&
N =
M1+A12 0 (A2) -
- = .
vV, - F, =0 (A3) N
! o= : -
) Fl+Vv, =0 (A4)
n
Enns. (A2), (A3) and (A4) can be written in matrix form as -
. - P
1 0 0 Ml 1 0 ¢ MZ 0 :
~
0 1 0o V.»+ | 0 0 -1 \Y = <0 (A5) .
1 2 ~
0 0 1 F Lo 1 0 F 0 ;
1 2 .
®
The compatibility equations for joint 1 are Ky
u, +v, =0 (A6) =
1 2 .
L S
vl—u2=0 (A7) :.
.-
. -— 15 = ':
by - v, =0 (A8)
® [
Eqns. (A6), (A7) and (A8) can be written in matrix form as -
1 0 O u, 0 1 0 u, 0 ’
¢ 01 0 vib+ sl 0 0 v, t =10 (A9) _
l-f
LO 0 ld " L0 0—1_ v 0 é
Ka
:.r
| S,
Combining egns. (A5) and (A0) and taking the Tourier transform of the -
resulting equation give E
-
'I
- _ -
o 3 ,

‘

)
R
LI N, |

RS



The 6 x 12 matrix in eqn. (Al0) is the joint coupling matrix El of joint 1.

Joint 2

The components of the state vectors Z3 and z, and a free-body diagram

of joint 2 are shown in Fig. A4. The equilibrium equations for joint 2 are

The compatibility equations for joint 2 are

..........................

" .. . n .
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1 0 O Uy 0 1 0 u, 0
01 0O vy + /-1 0 O A = 0 (Al2)
0 0 1 ¢3 0 0 -1 n 0

Combining eqns. (All) and (Al2) and taking the Fourier transform of

the resulting equation give

3
;3
Y3
1T 00 00001 0 0 0 O] ﬁ3 0
01 00 00-1020U0U0U0 V3 0
0010000 O0-10200 F, JRCBO
> (A13)
0001 0000 O0-1 00 u, 0
0 00 01 00 0O0O0O0 1 -4 0
0O 00001 0 00 O0-10 Tz. 0
L -
M,
4
4

The 6 x 12 matrix in eqn. (Al3) is the joint coupling matrix B, of joint 2.

Joint 3

The components of the state vectors z., z, and 2z

5 Zg and a free-bodyv

7

diagram of joint 3 are shown in Fig. A5. The equilibrium equations for

joint 3 are

- 33 -
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N ®" o v s g0 " [ [} 8 O ., e g0 o Ba8 i8¢ 0
L
,
-M - M = Alb 4
® M5 Mb "17 0 ( )
\5-V6—F7=0 (al5) :
® Fg - Fg +V, =0 (Al6)
Eqns. (Al4), (AlS5) and (Al6) can be written in matrix form as ;
!
{
- -3 5
- - <
1 0 0 MS 1 0 0 Mb 1 0 O M7 0 N\
0 1 0 \/5 + {0-1 0 \’6 + |0 0-1 \'7 = ¢0 (A17) -
°® L_0 0 1 Fs 0 0 -1 F6 0 1 0 F_/, 0
)
~
The compatibility equations for joint 3 are
° J
ug - ug = 0 (A18) :
Ve = Ve =0 (A19) ™5
@
Yo - ‘“a =0 (A20)
- = 2 ]
ug v, 0 (A21)
e
Ve + u, = 0 (A22) :
1+’y5 - \P_] = O (A:B) ;:
. -
V9
Eqns. (Al1l8) through (A23) can be written in matrix form as 5
\
.
® "
- 3 - ;
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1

H‘ 0
Lool v 0 0-1

Combining eyns. (Al7), (A24) and (A25) and taking the Fourier of the

o
(@]
c
wn
(o]
|
—
[e]

(A25)

—
(@
<

v
+
—
o
o
<

fi
<

resulting equation give
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9
® The 9 x 18 matrix ineqn. (A26) is the joint coupling matrix §3 of joint 3.
Joint 4
® The components of the state vectors 58’ _7;9 and £10 and a free-body
diagram of joint 4 are shown in Fig. Ab. The equilibrium equations for
joint 4 are
L
i . N
[1 0 07 [ 1 0 0] (4 10 07 [y, 0
' - ! + ! = 2
0 1 0 "8 0 0 -1 Vg 0 0 1 \10 0 (A27)
o [0 0 1| rg 0 1 0] g |0 o_i lFlO 0
The compatibility equations for joint 4 are
o
r
1 0 0 ug l’o 1 0 ug 0
0 1 ¢ Vo + i-1 0 O 2 = 0 (A28)
® LO 0 1 Vg LO 0 -1 “g 0
-
1 0 0O ug 01 0 Yo 0
@ - = 2
0 1 0 Vg 1 0 0 Vio 0 (A29)
0 0 1 '8 LO 0 -1 10 0
]
Combining egns. (A27), (A28) and (A2Y) and taking the Fourier transform
of the resulting equation give
¢
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v The 9 x 18 matrix in eqn. (A30) is the joint coupling matrix §4‘ of joint 4.

Joints 5, 7 and 9

& The geometry of each of joints 5, 7 and 9 is identical to the geometry
of joint 3. Also, the relative directions of the local coordinate direc-
tions of the members attached to each of joints 5, 7and 9 are identical to

) the relative directions of the members attached to joint 3. Therefore,

each of the joint coupling matrices B., B, and B, is equal to B

=5 27 =9 3

® Joints 6, 8 and 10

The geometry of each of joints 6, 8 and 10 is identical to the geometry
of joint 4. Also, the relative directions of the local coordinate direc-
o tions of the members attached to each of joints 6, 8 and 10 are identical
to the relative directions of the members attached to joint 4. Therefore,
each of the joint coupling matrices B

and B, is equal to B

By» Bg 10 L
o
Joint 11
The components of the state vectors 29 and 230 and a free-body diagram
® of joint 11 are shown in Fig. A7. The equilibrium equations for joint 11
are
— — ) -
1 00 Mg ) Fl 0 0 LI 0
‘ ‘
7 - 4 =
0 1 0 \29 + |10 0 1 \30 0 (A31)
0O 0 1 }29 0 1 0 F3O 0
L — L
®
- 39 -
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The compatibility equations for joint 11 are

o
1 0 O uyg 0 -1 O Usg 0
0 1 0 Vogt t |1 0 0 Voot = {0 (A32)
. 1 - T
0 0 1 ¥ag 0 0 1_] Y30 0
Combining eqns. (A31) and (A32) and taking the Fourier transform of the
® resulting equation give
Y29
® -
V29
Y29
r— b .
1 00 000 0-1 00 00 MZQ 0
® 01 000010000 O 729 0
001 00O0O0O0-1000 BYAQGL (A33)
0 0 01 00 0 0 O0-100 us 0
e 0 00 01 0O0O0O0O0 0-1 330 0
0 00 00100O0O0T1O0 530 0
"30
® _
Y30
F30
» The 6 x 12 matrix in eqn. (A33) is the joint coupling matrix Ell of joint
11.
L
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Joint 12

The components of the state vectors z.. and z,, and a free-body diagram

31 32

of joint 12 are shown in Fig. A8. The equilibrium equations for joint 12

are
1 0 O M3l 1 0 O M32 0
0 1 © V31 + 10 0-1 V32 =<0 (A34)
Lo 0 1 Fai 0 1 0 Fay 0
The compatibility equations for joint 12 are
1 0 O uqp 0 1 O uj, 0
0 1 0O Vil +|-1 0 O Va, =40 (A35)
0 0 l_J Y31 0 0 —l_J Y3, 0

Combining eqns. (A34) and (A35) and taking the Fourier transform of

the resulting equation give
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The 6 x 12 matrix in eqn. (A36) is the joint coupling matrix B

12.
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APPENDIX B: TRANSFER MATRIX RELATIONSHIPS

In this appendix, the transfer matrix relationships for two lattice
member models are given. In the first model, hereafter called the Bernoulli-
Euler beam model, the lattice member is modeled as a classical longitudinal
rod for axial motions and as a Bernoulli-Euler beam for flexural motions.

In the second model, hereafter called the Timoshenko beam model, the lattice
member is modeled as a classical longitudinal rod for axial motions and as

a Timoshenko beam for flexural motions. It is assumed in both models that
the axial and flexural motions are uncoupled. For both models, the state

vector at any point x of the lattice member is of the form

u(x,t)

v(x,t)

2(x,t) vix,t) (B1)
M(x,t)
V(x,t)

F(x,t)

where u(x,t) is the longitudinal displacement of the member, v(x,t) is the
transverse displacement of the member, u(x,t) is the rotation of the member,
M(x,t) is the bending moment in the member, V(x,t) is the shear force in

the member, F(x,t) is the axial force in the member, x is a spatial coordi-
nate which extends along the length of the member and t is time. The
components of the state vector and the sign convention adopted here for

the components of the state vector are shown in Fig. Bl. 1In I'ig. Bl, the

left end of the member is designated as point 1, and the right end of the
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member is designated as point 2. The local coordinate x is defined as

3

shown in Fig. Bl. Throughout this appendix, an overbar will denote a

LA,

Fourier transform. Derivations of the transfer matrix relationships given

ey

b here can be found in [1] and [11].
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® The transfer matrix relationship for the Bernoulli-Euler beam model .

is given by
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-
where
|
= 2 (cosh + co £) (B3)
Co ) o] S
c, = (51nhg + sinR) (B4)
1 28
1
¢, = —5 {(coshB - cosR) (B5)
2 2
28
|
1 .
¢, = —= (sinhB - sinR) (B6)
3 3
28
) 4 g 224
B = £ = (B7)
EI
8 = m\/_% (B8)
o
In eqns. (B2) through (B8), u is the mass per unit length of the member,
w is radian frequency, % is the length of the member from point 1 to point
o
2, E is the elastic modulus of the member, EI is the flexural rigidity of
the member, A is the cross-sectional area of the member and ¢ is the mass
density (mass per unit volume) of the member. For numerical computations,
®
the following values of the material and geometric constants are used:
-5 2 2 ) 6 . 2
u = 2.44 x 10 lb-sec™/in", £ = 9.85 in, E = 10 x 10 1b/in~, EI = 4880
2 - - 2
lb-in , A = 9.38 x 10 2 in2 and p= 2.6 x 10 4 lb-sec /ina‘
L 4
Timoshenko Beam Model
The transfer matrix relationship for the Timoshenko beam model is
@
given by
) - 54 -
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1 2 .
L J c, = A(cosh)\l - cos)\z) (B12) .
sinh}\l sink2 -
c, = A - (B13) )
3 ,\1 )\2 "
e A
A = —zl—T (B14) .:
Al + A 2 -
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At
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v = WE + 1o-12 - Lo+ (B15) X
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In eqns. (B9) through (B20), u is the mass per unit length of the member,
w is radian frequency, £ is the length of the member from point 1 to point
2, G is the shear modulus of the member, AS is the cross-sectional area

of the member divided by the geometric correction factor k, iy is the
radius of gvration of the member cross section, EI is the flexural
rigidity of the member, p is the mass density (mass per unit volume) of
the member, E is the elastic modulus of the member and A is the cross-

sectional area of the member. For numerical computations, the following

values of the material and geometric constants are used: U = 2.44 x 10_5

2,2 , 6 . 2 . 2
lb-sec”/in", £ = 9.85 in, G = 3.8 x 10 1b/in", AS = 0.113 in", « = 0.833,
i, = 7.21 x 1072 in, EI = 4880 1b-in’, p = 2.6 x 10 * 1b-sec’/in",

E =10 x 10° 1b/in” and A = 9.38 x 102 in°.
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and sign convention.
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APPENDIX C: LISTING OF COMPUTER PROGRAM

o
PROGRAM detcale (input,output);
) (* Thie program is used to evaluate det{(BG(w)TG(w)) for a *)
(# given value of w. The nonzero elements of BG(w)TG(w) are *)
(* stored in the matrix STBGTG. The matrix DIAG contains *)
(* the nonzero diagonal lines of BG{(w)TG(w). The matrix %)
(* DIAG is passed to the procedure bandet, which returns *)
(* the value of det(BG(w)TG(w)). A discussion of the *)
L (* procedure bandet is given ir. Linear Algebra, by J. H. *)
(* Wilkinson and C. Reinsch, Springer-Verlag, 1971. *)
CONST
m = 63
n = 96;
® p = 36;
ml = 23;
me = 17;
E = 10E6;
G = 3.8E6;
1lth = G.85;
® ro = 2.6E=4;
kap = 0.8333;
EI = 4880;
ar = 0.0938;
AS = 0.1126;
mu = 2.439E-5;
e r = 0.0721;
TYPE
mmatrix = ARRAY [1e.my1.em] OF real;
npmatrix = ARRAY [1een,1..p] OF real;
dmatrix = ARRAY [1..n,-m1..m2] OF real;
VAR
® th,w,b4,sig,tau,lam1,lam?,lam,c0,c1,c2,c3,det,b :real;
STBGTG :npmatrix;
DIAG :dmatrix;
T,1D,B12,B22,B31,B32,B33,B34,B35,B836,B41,B42,
B45,B46,B112,B122 tmmatrix;
i,j,k tinteger;
3 Timoshenko, BernoulliEuler :Boolean;
PROCEDURE bandet(n,m1,m2:integer; VAR A:dmatrix; VAR det:real);
VAR
d1,x,norm,macheps treal;
) i,j,k,1 tinteger;
- 59 -
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BEGIN
macheps
norm

FOR i :
BEG

END
1l := m
FOR i :
BEG
END
d1 := 1
FOR k :

BEG

FUNCTIO
BEG
sin
END

0.000000000000001;
0.0;

= 1 to n DO

IN x := 0.0;

FOR J := -m1 to m2 DO

x := x + abs(A[i,j]);

IF (norm < x) THEN norm := x;
H

H

= 1 to m1 DO

IN

1-1 to m2 DO

i= A[1,)]);

to m2 DO

03 1 := m1;
= 1 to n DO
IN x := Alk,-m1]; 1 :
IF (1<n) THEN 1 :
FOR j := k + 1 to 1 do
IF abs(A[j,~m1]) > abs(x) THEN
BEGIN x := A[j,-m1]; i := j; END;
d1 := d1 * x;
IF (x = 0) THEN
BEGIN
A[k,-m1] := norm * macheps;
END;
IF (i <> k) THEN
BEGIN d1 := =d1;
FOR j := =-m1 to m2 DO
BEGIN x := A[k,j]; A[k,J] := Ali,3];
Al1,3] = x;

END;

END;

FOR i := k + 1 to 1 DO

BEGIN x := A[i,-m1]/A[k,~m1];
FOR §j := 1=m1 to m2 DO
A[i’j'1] i= A[ivjj - (x * A[kvj])3
Ali,m2] := 0;

END;

H

d1;

N sinh (x:real) : real;

IN
h := (exp(x) - exp(-x))/2.0

.
’
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FUNCTION cosh (x:real)

real;

......

BEGIN
cosh := (exp(x) + exp(-x))/2.0 .
END; .
BEGIN .
Timoehenko := false; -
BernoulliEuler := true; 2
FOR i := 1 to m DO (* initialize submatrices of BGTG *) -
BEGIN e
FOR j := 1 to m DO ‘
BEGIN .
ID[i,j] := 0.0; B32[i,j] := 0.0;
B12[i,j] := 0.0; B33[i,j] := 0.0; N
B22[i,j]) := 0.0; B34[i,j] := 0.0; :
B31[i,j] := 0.0; B35[1i,j] := 0.0; p
B36(i,j] := 0.0; B41{i,j] := 0.0; .
B42[i,j] := 0.0; B45[i,j] := 0.0; P
B46[i,j] := 0.0; B112[i,j] := 0.0;
B122[i,J] := 0.0;
END;
END;
Y (* form the joint coupling matrices *)
B12{1,2] := 1.0 B12[4,4] := 1.0;
B12[2,1] = =1.0; B12[5,6] := =1.0;
B12E3,3% t= =1.0; B12[6,5} t= 1.0 .
B2211,2 t= 1.0; B22(4,4 t= -1.0; 2
® B22([2,1] := -1.0; B22([5,6] := 1.0; ‘
B22[3,3] := =-1.0; B22[6,5] := -1.0; b
B31[1,1] := 1.0; B31[4,1] := 1.0; n
B31[2,2] := 1.0; B31(5,2] := 1.0; 7
B31([3,3] := 1.0; B31[6,3] := 1.0; by
B32{1,1] := -1.0; B33[4,2] := -1.0; 2
® B32(2,2] := -1.0; B33[5,1] = 1.0;
B32[3,3] := -1.0; B33[6,3] := -1.0;
B34[1,4] := 1.0; B35[1,4] := -1.0; .
B34[2,5] := 1.0; B35([2,5] := -1.0; -
B34[3,6] := 1.0; B35[3,6] := -1.0; &
B36[1,4] := <1.0;  B41[4,1] := 1.0; .
® B36(2,6] := -1.0; B41[5,2] := 1.0; :
536[3’5] = 1.0; B41[6v3] = 1.0; :
B42[4,2] := 1.0; B45[4,4] := 1.0; "
B42[5,1) := -1.0; B45([5,6 ] = =1.0; )
B42[6,3] := -1.0;  B45[6,5] := 1.0; :
B46[1,2] := 1.0; B46(4,4] = =1.0; b
® B46[2,1] := <1.0; B46[5,6] := 1.0; -]
B46[3,3] := -1.0; B46(6,5] := -1.0; y
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B112[1,2]
B112{2,1]
B112{3,3]
B122[1,2]
B122[2,1]
B122[3,3]
ID[1,1]
ID[2,2]
I1D{3,3]

Hnun o nn

w = 10.0;
WHILE (w <
BEGIN

FOR i

BEGIN
FOR j

BEG

STB

END

END;

IF (Timos
BEGIN
th
b4
sig
tau
lam1

lam?

lam
cO

c1

U

' -".~ ';"': \.:‘_.:_'.:\ . :__ .

B112[4,4]
B112([5,6]
B112[6,5]
B122[4,4]
B122[5,6]
B122[6,5]
ID[4,4]
ID{5,5]
ID[6,6]

1t 1
- ad ad L D A
e o e & 8 3 & o o
[« NoNoNeoRoNoNeNoNo)

we Ws We We We We We we we

([ (N Y | O (T [ I |
|

J T G G S QT G I Y
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[ocNeoNoNaNoNoNeoNeRol
e We Wwe WE We WE Nae we e

ee e o o

(* assign a value to w *)

10000.0) DO

1 to n DO

t= 1 to p DO
IN
GTG[i,j]) :=

0-0;

henko) THEN

mu * sqr(w)*
mu * sqr(r)*
sqrt(sqrt(b4

W ononon

ae 20 00 oo oo

sqrt(sqrt(b4

.

+ 4+ 1+

1/(sqr(lam1) +

. oo

(# initialize the matrix STBGIG *)

(*#* form transfer matrix of Timoshenko beam *)
l1th * w * sqrt(ro/E);
mu ¥ sqr(w) * sqr(sqr(lth))/EI;
sqr(1lth)/(G*as);
sqr(w)* sqr(1lth)/EI;

((sqr(sig-tau))/4))

(sig+tau)/2);

((sqr(sig-tau))/4))

(sig+tau)/2);
sqr(lam2));

lam * (sqr(lam2) * cosh(lamt)

+ sqr(lam1) * cos(lam2));

lam * (sqr(lam2)/lam1 * sinh(lam1)

+ sqr(lam1)/lam2* sin(lam2));
lam * (cosh(lam1) = cos(lam2));
lam * (1/lam1 * sinh(lam1)

~ 1/lam2 * sin(lam2));

coas(th);
0.0;
0.0;
0.0;
0.0;

s e

0.0;
c0 - (sig*c2);

1th/(E*ar)*sin(th)/th;
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T[2,5] := (sqr(lth)*1th/(b4*EI))*(~(sig*c1)
® + ((b4 + sqr(sig))*c3));
T[2,6] := 0.0;
T[3,1] := 0.0;
T[3,2] := (b4/1th)*c3;
T[3,3] = ¢0 - (tau*c2);
T[3,4 = (1th/EI) * (c1 - (tau*c3));
® T[3y5] = T[294];
T(3,6] := 0.0;
T[4,1] := 0.0;
T[4,2] := b4 * (EI/sqr(1th)) * c2;
T[4,3] := (EI/1th) * (-(tau*c1) + ((b4 + sqr(tau))*c3));
T(4,4] := T[3,3];
o T[4,5] = T[Z’B];
T[4,6] := 0.0;
T[5,1] := 0.0;
T[5,2] := b4*(EI/(sqr(1lth)*1th))*(c1 - (sig*c3));
T[5,3}) := T[4,2];
T({5,4] := T[3,2];
® T(5,5] := T{2,2];
T[5,6] := 0.0;
T[6,1] := -mu*lth*sqr(w)*sin(th)/th;
T[6,2] := 0.0;
T[6)3] = 0.0;
T[6,4] := 0.0;
o T[6,5] = 0.0;
T[6,6] := cos(th);
END;

IF (BernoulliEuler) THEN
BEGIN (* form transfer matrix of Bernoulli-Euler beam *)

° b4 = mu * sqr(w) * sqr(sqr(lth)) / EI;
b = sqrt(sqrt(b4));
th = 1th * w * sqrt{(ro/i);
c0 = 0.5 * (cosh(b) + cos(b));
c1 = (1 / (2 * b)) * (sinh(b) + sin(b));
c2 = (1 / (2 * sqr(b))) * (cosh(b) =~ cos(b));
® c3 = (1 / (2 * sqr(d) * b)) * (sinh(b) ~ sin(b));
T[(1,1] := cos(th);
T{1,2] := 0.0;
T[1,3] := 0.0;
T{1,4] := 0.0;
T[1’5J = 0.0;
° T[1,6] := 1th / (E * ar) * sin(th) / th;
T[2,1] := 0.0;
T(2,2] := ¢O0;
T{2,3] := 1th * c1;
T{2,4] := sqr(lth) * c2 / EI;
T{2,5] := sqr(1lth) * 1th * ¢3 / EI;
° T[2,6] := 0.0;
T[391] = 0.0;
- 63 -
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T[3,2] := b4 * c3 / lth;
T[313] := cO;
T{3,4] := lth * c1 / EI;
T[3,5] := T[2,4];
T{3,6] := 0.0;
T 4,1] := 0.0;
T[4,2)] := b4 * EI * c2 / sqr(1lth);
T[4,3] := b4 * EI * c3 / 1lth;
T[4,4] := T[3,3];
T{4,5] := T[2,3];
T{4,6] := 0.0;
T[591] = 0°0;
T[5,2] := b4 * EI * ¢1 / (sqr(lth) * 1th);
T[5,3] := T[4,2];
T[5,4] := T[3,2];
T({5,5] := T[2,2];
T[5,6] := 0.0;
T[6,1]) := <mu * 1lth * sqr(w) * sin(th) / th;
T{6,2] := 0.0;
T[6,3] := 0.0;
T[6,4] := 0.0;
T[6,5] := 0.0;
T(6,6] := cos(th);
END;
FOR i := 1 to m DO (* form the matrix STBGTG *)
BEGIN
FOR j :t= 1 to m DO
BEGIN
STBGTG [ i , 18 + j] := ID[4i,3]);
STBGTG| i, 24 + 3] = B12[1i,3i];
STBGTG[ 6 + i, 12 + 3] := T(i,3];
STBGTG[ 6 + i, 24 + j] := B22[i,j];
STBGTG[12 + i, 24 + j] := B32[i,j];
STBGTG[12 + 4, 30 + j] := B33[i,j];
STBGTG[18 + 1, 18 + j] := B35[i,j);
STBGTG[24 + 1, 18 + j] := T[i,5];
STBGTG[24 + i, 24 + j] := B46[i,j];
STBGTG[30 + i, 24 + j] := B32[i,j];
STBGTG[30 + i, 30 + j] s= B33[i,j];
STBGTG[36 + i, 18 + j] := B35[1i,j];
STBGTG[84 + 1, 6 + j] := T[i,5];
STBGTG[84 + i, 24 + j] := B112[i,j];
STEGTG[90 + i, 18 + j] := T(i,3];
FOR k := 1 to m DO

BEGIN
STBGTG(12 + i, 12 + j)

STBGTG[12 + 1, 12 + 3]
+ B31[i,k] * T{k,j];
STBGTG[18 + 1, 6 + 3]
+ B34{i,k] * T{k,jl;

STBGTG[18 + i, 6 + j)
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STBGTG[18 + i, 12 + j] := STBGTG[18 + 1, 12 + j]
+ B42[i,k] * T[k,j];
S.BGTG[18 + i, 24 + j] := STBGTG[18 + i, 24 + j]
+ B41[i,k] * T[k,j];
STBGTG[24 + i, 6 + j] := STBGTG[24 + 1, 6 + J]
+ B45[i,k] * T[k,j);
STBGTG[90 + i, 12 + j] := STBGTG[90 + i, 12 + Jj]
+ B122[i,k] * T[k,j];
END;
STBGTG[18 + i, 24 + j) := STBGTG[18 + i, 24 + Jj]
+ B36[1i,j];
STBGTIG[30 + i, 6 + j] := STBGTG[12 + i, 12 + j];
STBGTG[36 + i, j ] := STBGTG[18 + i, 6 + j];
STBGTG[36 + i, 12 + j] := STBGTG[18 + i, 12 + jl;
STBGTG[36 + i, 24 + j] := STBGTG[18 + i, 24 + jl;
END;
END;
FOR i := 1 to m DO
BEGIN
FOR j := 1 to p DO
BEGIN
STBGTG[42 + 1i,j] := STBGTG[24 + i,j];
STBGTG[48 + 1,j] := STBGTG[30 + i,j]:
STBGTG[54 + i,j] := STBGTG[36 + i,j];
STBGTG[60 + i,j] := STBGTG[{24 + i,j]l;
STBGTG[66 + i,j] := STBGTG[30 + 1i,j];
STBGTG[72 + i,j] := STBGIG[36 + i,j];
STBGTG[78 + i,3j] := STBGTG[24 + i,j];
END;
END;
FOR i := 1 to n DO (# initialize the matrix DIAG *)
BEGIN
FOR j := -m1 to m2 DO
BEGIN
DIAG[i,j] := 0.0;
END;
END;
FOR 4 := 0 to 95 DO (* form the matrix DIAG *)
BEGIN
FOR j := 1 to 36 DO
BEGIN
DIAG[i + 1, =19 = (i mod 6) + j] := STBGTG[i + 1, ]
END;
END;
write (Lst,w);
bandet(n,m1,m2,DIAG,det); (* call procedure bandet, *
writeln (Lst,det); (* write det , *

W o
END;
END.

w + 10.0;
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